
CoDet: Sentence-based Containment Detection
in News Corpora

Emre Varol, Fazli Can, Cevdet Aykanat, Oguz Kaya
Computer Engineering Department

Bilkent University
Ankara, Turkey

{ evarol, canf, aykanat } @cs.bilkent.edu.tr , oguzkaya87@gmail.com

ABSTRACT

We study a generalized version of the near-duplicate detection

problem which concerns whether a document is a subset of

another document. In text-based applications, document

containment can be observed in exact-duplicates, near-duplicates,

or containments, where the first two are special cases of the third.

We introduce a novel method, called CoDet, which focuses

particularly on this problem, and compare its performance with

four well-known near-duplicate detection methods (DSC, full

fingerprinting, I-Match, and SimHash) that are adapted to

containment detection. Our method is expandable to different

domains, and especially suitable for streaming news.

Experimental results show that CoDet effectively and efficiently

produces remarkable results in detecting containments.

Categories and Subject Descriptors

H.3.7 [Digital Libraries]: Collection, System Issues.

General Terms

Algorithms, Experimentation, Performance, Reliability

Keywords

Corpus Tree, Document Containment, Duplicate Detection,

Similarity, Test Collection Preparation.

1. INTRODUCTION
Near-duplicate1 detection is an important task in various web

applications. Due to reasons such as mirroring, plagiarism, and

versioning such documents are common in many web applications

[17]. For example, Internet news sources generally disseminate

slightly different versions of news stories coming from syndicated

agencies by making small changes in the news articles.

Identifying such documents increases the efficiency and

effectiveness of search engines.

We consider a generalized version of the near-duplicate

detection problem and investigate whether a document is a subset

of another document [2]. In text-based applications, document

containment can be observed in near-duplicates and containments.

We refer to identifying such document pairs as the document

containment detection problem. We study this problem within the

context of news corpora that involve streaming news articles.

If a document dC possesses all the information that document

dA has, then dC is said to contain dA, which is denoted as dC⊇dA,

and this relation is called containment. Moreover, if two

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

CIKM‟11, October 24–28, 2011, Glasgow, Scotland, UK.

Copyright 2011 ACM 978-1-4503-0717-8/11/10...$10.00.

documents contain roughly the same content, they are near-

duplicates [6]. Although near-duplicate condition is a special case

of containment, these two cases are not usually distinguished from

each other [15]. Similar to the “conditional equivalence” concept

defined by Zobel and Bernstein [17], if dC⊇dA, then a news-

consumer who have already read dC would have no need to read

dA. Of course, dC⊇dA does not necessarily imply dA⊇dC, i.e.

containment relation is asymmetric. By detecting dC⊇dA, news

consumers that have already seen dC can be informed to skip

reading dA.

In related studies, containment problem is addressed by near-

duplicate detection algorithms. Therefore, we compare

performance of CoDet with well-known near-duplicate detection

approaches.

Contributions of this study are the following. We introduce a

sentence-based containment detection method adaptable to

different text-based problem domains, and especially suitable for

streaming news; show that our approach outperforms commonly

known near-duplicate detection methods; and construct a test

collection using a novel pooling technique, which enables us to

make reliable judgments for the relative effectiveness of

algorithms using limited human assessments.

2. RELATED WORK
In near-duplicate detection similarity measurement plays an

important role [11]. By using similarity, two documents are

defined as duplicates if their similarity or resemblance [3] exceeds

a certain threshold value. Such approaches are applied to identify

roughly the same documents, which have the same content except

for slight modifications [1]. In comparisons, factors other than

similarity may also play a role. Conrad and Schriber [7] after

consulting librarians deem that two documents are duplicates if

they have 80% overlap and 20 variations in length.

Similarity measures may use all words in documents in

calculation. Instead of using each word, a sequence of them,

shingles, may be used. In shingling approaches, if two documents

have significant number of shingles in common, then they are

considered as similar (near-duplicate). Well-known shingling

techniques include for example COPS [1] and DSC (Digital

Syntactic Clustering) [3]. COPS uses the sentences (or small

units) to generate hash codes and stores these in a table to see if a

document contains a sentence. Wang and Chang propose using the

sequence of sentence lengths for near-duplicate detection and they

evaluated different configurations of sentence-level and word-

level algorithms [14].

Shingling and similarity approaches suffer from efficiency

issues. As a result a new strategy emerged which is based on

hashing of the whole document. I-Match [6] is a commonly

known approach that uses this strategy. It filters terms based on

collection statistics (idf values). Charikar‟s [5] Simhash method is

based on the idea of creating a hash by using document features

(words, bigram, trigrams, etc.). It compares bit differences of

these signatures to decide if two documents are near-duplicate or

not. Yang and Callan [15] use clustering concepts for efficiency.

While clustering documents they use additional information

extracted from documents and structural relationships among

document pairs.

Hajishirzi et al. [9] propose an adaptable method for near

duplicate detection by representing documents as real valued

sparse k-gram vectors, where weights are learnt to optimize a

similarity function. Zhang et al. [18] address the partial-duplicate

detection problem by doing sentence level near-duplicate

detection and sequence matching. Their algorithm generates a

signature for each sentence and sentences that have the same

signature are considered as near-duplicates. Theobald et al. [13]

propose SpotSigs algorithm that combines stopword antecedents

with short chains of adjacent content terms to create signatures.

3. CODET ALGORITHM

3.1 Containment Similarity Concept
CoDet is a novel sentence-based containment detection algorithm.

It employs a new similarity measure called containment similarity

(CS). It measures to what extent a document dA is contained by

another document dC, which is defined as

where SA and SC denote the set of sentences in dA and dC,

respectively. The function cs(si, sj) indicates containment

similarity between sentences si and sj, which is calculated as

where f(si, sj) denotes the word sequence representing the longest

word prefix match of the sentences si and sj, lent is the length of

the word sequence t, and wt,k stands for the kth word in the word

sequence t. For example, let s1 be “John is happy.” and s2 be

“John is sad.” then f(s1, s2) is a word sequence (John, is),

 is 2 and wf(s1, s2),1 is John.

As can be seen in Formula 2, containment similarity between

two sentences grows significantly as their word prefix match gets

longer. The containment similarity of a document to itself is

referred to as self-containment similarity (SCS).

Fig. 1. Insertion of three documents dA: “NASDAQ starts day with an

increase. Shares gain 2%.”, dB: “NASDAQ starts the day with a decrease.

Shares lose 2%.”, and dC: “Shares lose 2%.”. For the sake of clarity, words

of sentences are not sorted according to their idf values.

3.2 Containment Similarity Calculation
For efficient calculation of containment similarities, we utilize a

data structure called corpus tree. The corpus tree begins with a

virtual root node which contains a pointer list storing the locations

of the children nodes in the next level. In addition to pointer list,

nodes other than the root contain a label and a document list. The

label represents the node‟s term and the document list contains

visiting document ids.

 Let dA denote a document with a set of sentences SA= {s1, s2

… sn}. Processing of dA involves processing all of its sentences.

Insertion of si (1≤ i ≤ n) to the corpus tree is performed as follows:

First, words of si are sorted according to their idf values in

descending order. Let <w1, w2 … wm> denote the sequence of

words in si after sorting. These words are inserted into the corpus

tree starting from the virtual root node. If the root has a child

with label w1, then similarity values of dA with all documents in

's document list are increased according to Formula 2.

Otherwise, a new child node
 with label w1 is created and

added to the root‟s pointer list. In the next step, we treat
 as

we did the root, and insert the following word w2 of si similarly.

The insertion of si finishes after all of its words are processed. The

remaining sentences of dA are handled in the same manner. The

same is done for the remaining sentences of dA.

Fig. 1. shows how the corpus tree grows with sentence

insertions. In Fig. 1-I, dA‟s sentences “NASDAQ starts day with

an increase.” and “Shares gain 2%.” are inserted to the corpus tree

starting from the virtual root, which is shown by a dark circle.

Since the tree is initially empty, while inserting the first sentence

all the nodes with labels <nasdaq, starts, day, with, an, increase>

are created. Similarly, insertion of the second sentence creates

nodes with labels <shares, gain, 2%>. In Fig. 1-II, during the

insertion of the sentence “NASDAQ starts day with a decrease.”

previously created nodes with labels <nasdaq, starts, day, with>

are visited and updated. Also, two nodes with labels <a,

decrease> are created. Insertion of the sentence “Shares lose 2%.”

visits the node with label shares and creates two nodes with labels

<lose, 2%>. Thus, similarity value of dA and dB is increased by

summation of each revisited node's impact values, which is

calculated by multiplication of node‟s depth and idf value of its

label. For example, contribution of the node with label starts is

 because its depth is 2 and word starts

appears in 2 of 3 documents (in the experiments, the idf values are

obtained from a large reference collection). The final structure of

the corpus tree after the insertion of dC is shown in Fig. 1-III.

To decide whether a document dA is contained by another

document dC, CoDet uses CS(dA, dC) as well as SCS(dA) values. If

(CS(dA, dC) / SCS(dA)) exceeds the equivalency threshold level

(ETL), dC is said to contain dA. In the experiments, different ETL

values are tested.

3.3 Complexity Analysis
For each scenario, let n denote the number of documents and let c

denote the average number of words per document, which is

treated as constant.

First Scenario (One Content, n Documents): In this case, each

document has the same content; therefore, corpus tree contains c

nodes. Each node contains n integers in its document list. As a

result, the memory requirement of the corpus tree is O(n) but due

to pairwise containment similarity increase operations the

algorithm takes O(n2) time.

Second Scenario (n Different Contents, n Documents): In this

case, each document has totally different content. Thus, corpus

tree contains nc nodes (one node for each word). Each node

contains only one document id in its document list. Therefore,

asymptotically the memory requirement of the corpus tree is O(n)

and the algorithm takes O(n) time.

The first scenario is the worst case for CoDet, where the algorithm

performs nonlinearly. The second one is the best case for CoDet

and the algorithm runs in linear time. In practice the algorithm

behaves as if it is linear because average number of near-duplicate

per document is significantly smaller than n. Also CoDet is

especially suitable for streaming news since with a time window

concept, which makes older documents to be removed from the

corpus tree, the corpus tree does not grow too much.

4. EXPERIMENTAL SETUP
We used four algorithms to compare their effectiveness and

efficiency with CoDet. These algorithms are:

DSC: Every three overlapping substrings of size four in the

documents are hashed. If a document dC contains 60% of dA‟s

hash values, we say dC⊇dA [3].

Full Fingerprinting (FFP): For each document, all substrings of

size four are hashed. If document dC contains 60% of dA‟s hash

values, then, dC⊇dA.

I-Match: First two words with the highest idf values are ignored.

After that, ten words with the highest idf values are used to create

a fingerprint for each document. When a pair of documents has

the same fingerprint, the pair is marked as containment [6].

SimHash: First two words with the highest idf values are ignored.

Then, each unique term of a document is hashed. We use a vector

v, whose size is equal to the hash value bit size, to determine the

final SimHash [5] value. For each term t, ith element of the vector

v is updated as follows: If ith bit of the hash value of t is zero, then

it is decreased by idf of w. It is increased by the idf otherwise.

Finally, if ith element of v is positive, ith bit of the SimHash value

is set to one; otherwise it is set to zero. When a pair of documents‟

SimHash values has a Hamming distance less than three, the pair

is considered as containment.

For hashing, SHA1 [6] algorithm is used in all methods.

Stopword elimination and a word truncation-based stemming

(first-5) are performed before the detection process. I-Match,

SimHash and CoDet requires idf values. These values are obtained

from a large reference collection (defined in the next section). In

order to do a fair evaluation, each algorithm‟s parameters are

optimized to give the best results for efficiency.

We performed the experimentation on a machine with quad

2.1Ghz six-core AMD Opteron processors with six 128 KB L1,

512 KB L2, and one 6MB L3 cache. It has 128 GB memory and

operating system Debian Linux v5.0.5.

4.1 Test Collection Preparation
There is no gold-standard test collection for containment detection

in news corpora; therefore, we prepared a test dataset from the

Turkish TDT (Topic Detection and Tracking) news collection

(BilCol-2005) [4] which contains 209,305 streaming (time-

ordered) news articles obtained from five different Turkish web

news sources.

For efficiency measurement, we used all documents of BilCol-

2005. For effectiveness measurement, we used the first 5,000

documents of BilCol-2005. It is practically impossible to provide

human assessment for each document pair in this sub-collection.

Our approach to human assessments is similar to the pooling

method used in TREC for the evaluation of IR systems [16]. For

the creation of the dataset, we obtained a number of possible

containments by running all five methods (including CoDet) with

permissive parameters. In this way, methods nominate all pairs

that would normally be chosen with their selective parameters,

together with several additional pairs as containment candidates.

Since the methods are executed with permissive parameters, we

expect that most of the real containments will be added to the test

collection. All pairs of documents, which are marked as

containments by any of the methods, are brought to the attention

of human assessors to determine whether they actually are

containments. Note that in order to measure the effectiveness of a

new algorithm with this test dataset, adding human assessments

only for containment candidates that are nominated solely by this

new algorithm to our dataset is sufficient.

By this approach, our dataset includes only true positive (TP)

and false positive (FP) document pairs returned by any of our

permissive algorithms. excluding true negative and false negative

pairs do not change the relative effectiveness rankings of selective

algorithms during the test phase; because, if a permissive

algorithm marks a pair as negative (non-containment), then its

selective counterpart should also marks that pair as negative.

Therefore, including TN and FN pairs of permissive algorithms in

our dataset would not contribute to the number of positive pairs

(TP‟s and FP‟s) returned by any selective algorithm during the

test phase. Hence, using our pruned dataset, precision1 values of

the selective algorithms remain unchanged with respect to

precision values they would obtain in a full dataset having

annotations for all possible document pairs. Similarly, recall

values of the selective algorithms decrease proportionally (with

the same ratio of total number of containments in the pruned

dataset to the total number of containments in the full dataset, for

all algorithms) with respect to recall values they would obtain in

the full dataset.

Our pooling process generated 4,727 document pairs

nominations. We performed a human-based annotation to obtain a

ground truth. The pooled document pairs are divided into 20

groups containing about the same number of nominations. Each

document pair is annotated by two assessors. The assessors are

asked if the nominated document pairs are actually containments.

The assessors identified 2,875 containment cases. The size of our

dataset is comparable with the annotated test collections reported

in related studies [13].

In information retrieval, human assessors may have different

opinions about the relevance of a document to a query. A similar

situation arises in our assessments. For example, for the document

pair dC = “XYZ shares increase 10% from 100 to 110.” and dA =

“XYZ shares increase from 100 to 110.”, some assessors may say

that dC and dA are near-duplicates, while some others may claim

dC contains dA, but the dA does not contain dC. In such cases we

expect disagreements among human assessors. In order to validate

the reliability of the assessments, we measured the agreements of

the judgments by using the Cohen‟s Kappa measure, and obtained

an average agreement rate of 0.73. This indicates almost a

substantial agreement [10], which is an important evidence for the

reliability of our test dataset. Furthermore, such conflicts are

resolved by an additional assessor.

5. EXPERIMENTAL RESULTS
In this section, we first investigate the impacts of the following

parameters on the performance of CoDet: Processed Suffix Count

(PSC), Depth Threshold (DT), and Word Sorting (WS). This

discussion is followed by efficiency and effectiveness

performance of CoDet with those of four well-known near-

duplicate detection algorithms. Effectiveness measurement is

1 Precision (P) = |TP| / (|TP| + |FP|). where |S| is the cardinality of

the set S. Recall (R) = |TP| / (|TP| + |FN|). F1 = 2PR / (P + R).

done by precision, recall and F1 values. Impacts of parameters and

effectiveness experiments are done on prepared test collection.

Efficiency experiment is performed with the whole BilCol-2005.

5.1 Impacts of Parameters
Processed Suffix Count (PSC): It determines how many

suffixes of each sentence are inserted to the corpus tree. If the

PSC is 3, the processed suffixes for “NASDAQ starts day with an

increase.” are the sentence itself, <starts, day, with, an, increase>

and <day, with, an, increase> Increasing PSC increases space

requirement but do not change effectiveness considerably as

shown in Fig. 2: Different PSC values result in close F1 scores.

Fig. 2. Effect of Processed

Suffix Count (PSC).

Fig. 3. Efficiency Comparison:

Execution Time (sec) vs. Number of

Documents.

 Fig. 4. Effect of Depth Threshold

(DT): Word Sorting (WS) is on.

Fig. 5. Effect of Depth Threshold

(DT): Word Sorting (WS) is off.

Depth Threshold (DT): It determines how many words of a

sentence are inserted to the corpus tree. If the DT is 3, the

processed words “NASDAQ starts day with an increase.” are

<nasdaq, starts, day>. Fig. 4 and 5 show the effect of DT on F1

score. Sorting words of a sentence by idf values places

representative words close to the virtual root. Thus, results are

better for small DT values when word sorting is enabled. It avoids

the noise effect of insignificant words in similarity calculations. In

the experiments, DT value of 5 gives the best result; also smaller

DT values yield a similar performance. Thus, instead of having

the corpus tree structure, an algorithm that considers only a few

most significant words from each sentence can improve efficiency

without sacrificing effectiveness significantly.

Word Sorting (WS): Sorting words in sentences by idf values

causes important words to be located close to the virtual root.

Since most sentences start with common words, by using word

sorting, we avoid many redundant similarity calculations. In the

experiments, enabling word sorting decreases average number of

calculated similarity per document from 341 to 3.53.

5.2 Comparing with Other Algorithms
The efficiency results are given in Fig. 3. As the number of

documents increase, execution time of full fingerprinting

increases non-linearly. Hence, it is not feasible for large

collections. This is because it calculates similarity values for each

document pair that has at least one substring in common. CoDet

performs as the third best algorithm in time efficiency; because,

the corpus tree accesses impose many random memory accesses,

which disturb cache coherency. Our results show that I-Match,

SimHash and CoDet are scalable to large collections.

 Table 1 shows the effectiveness results. The best performance

with a value of 0.85 F1 score is observed with FFP since it

calculates text overlaps between document pairs having a

common substring. Therefore, without making any semantic

analysis, it is difficult to outperform FFP in terms of effectiveness

with a time-linear algorithm. CoDet finds text overlaps by only

using important words of sentences and is the second best in terms

of effectiveness with an F1 score of 0.76. I-Match, SimHash, and

DSC perform poorly with respective F1 scores of 0.45, 0.39, and

0.30. FFP is not feasible for large collections; thus, CoDet is the

most suitable algorithm for containment detection in news

corpora.

6. CONCLUSIONS
In this work we investigate containment detection problem, which

is a more generalized version of the near-duplicate detection

problem. We introduce a new approach, and compare its

performance with four other well-known methods. As the

experimental results demonstrate CoDet is preferable to all these

methods; since it produces considerably better results in a feasible

time. It also has desirable features such as time-linear efficiency

and scalability, which enriches its practical value. Our method is

versatile, can be improved, and can be extended to different

problem domains.

7. REFERENCES
[1] Brin, S., Davis, J., Garcia-Molina, H.: Copy detection mechanisms for digital

documents. ACM SIGMOD Conf. (1995) 398-409.

[2] Broder, A.: On the resemblance and containment of documents. Proc. of

Compression and Complexity of Sequences (1997) p.21.

[3] Broder, A. Z., Glassman, S. C., Manasse, M. S., Zweig, G.: Syntactic

clustering of the web. Computer Networks and ISDN Systems, 29(8-13)

(1997) 1157-1166.

[4] Can, F., Kocberber, S., Baglioglu, O., Kardas, S., Ocalan, H. C., Uyar, E.: New

event detection and topic tracking in Turkish. JASIST 61(4) (2010) 802-819.

[5] Charikar, M.: Similarity estimation techniques from rounding algorithms.

ACM STOC (2002) 380-388.

[6] Chowdury, A., Frieder, O., Grossman, D., McCabe, M. C.: Collection statistics

for fast duplicate document detection. ACM TOIS, 20(2) (2002) 171-191.

[7] Conrad, J. G., Schriber, C. P.: Managing déjà vu: Collection building for the

identification of duplicate documents. JASIST, 57(7) (2006) 921-923.

[8] Deng, F., Rafiei, D.: Approximately detecting duplicates for streaming data

using stable Bloom filters. ACM SIGMOD Conf. (2006) 25-36.

[9] Hajishirzi H., Yih W., Kolcz A.: Adaptive near-duplicate detection via

similarity learning. ACM SIGIR Conf. (2010): 419-426.

[10] Landis, J. R., Koch, G. G.: The measurement of observer agreement for

categorical data. Biometrics, 33(1) (1977) 159–174.

[11] Manku, G. S., Jain, A., Sarma, A. D.: Detecting near-duplicates for web

crawling. ACM WWW Conf. (2007) 141-150.

[12] Monostori, K., Zaslavsky, A. B., Schmidt, H. W.: Efficiency of data structures

for detecting overlaps in digital documents. ACSC (2001) 140-147.

[13] Theobald, M., Siddharth, J., Paepcke, A.: SpotSigs: robust and efficient near

duplicate detection in large web collections. ACM SIGIR „08 Conf. 563-570.

[14] Wang, J. H., Chang, H. C.: Exploiting sentence-level features for near-

duplicate document detection. AIRS Conf. (2009) 205–217

[15] Yang, H., Callan, J. P.: Near-duplicate detection by instance-level constrained

clustering. ACM SIGIR Conf. (2006) 421-428.

[16] Zobel, J.: How reliable are the results of large-scale information retrieval

experiments? ACM SIGIR Conf. (1998) 307-314.

[17] Zobel, J., Bernstein, Y.:. The case of the duplicate documents measurement,

search, and science. LNCS, Vol. 3841. (2006) 26-39.

[18] Zhang, Q., Zhang, Y., Yu, H., Huang, X.: Efficient partial-duplicate detection

based on sequence matching. ACM SIGIR Conf. (2010) 675-68

Table 1. Effectiveness Comparison of Algorithms

Algorithm Precision Recall F1 Measure

FFP 0.82 0.88 0.85

CoDet 0.75 0.76 0.76

I-Match 0.72 0.33 0.45

SimHash 0.53 0.30 0.39

DSC 0.22 0.45 0.30

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/y/Yih:Wen=tau.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/k/Kolcz:Aleksander.html
http://www.informatik.uni-trier.de/~ley/db/conf/sigir/sigir2010.html#HajishirziYK10
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/z/Zhang:Qi.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/y/Yu:Haomin.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/h/Huang:Xuanjing.html
http://www.informatik.uni-trier.de/~ley/db/conf/sigir/sigir2010.html#ZhangZYH10

