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ABSTRACT 

We study a generalized version of the near-duplicate detection 

problem which concerns whether a document is a subset of 

another document. In text-based applications, document 

containment can be observed in exact-duplicates, near-duplicates, 

or containments, where the first two are special cases of the third. 

We introduce a novel method, called CoDet, which focuses 

particularly on this problem, and compare its performance with 

four well-known near-duplicate detection methods (DSC, full 

fingerprinting, I-Match, and SimHash) that are adapted to 

containment detection. Our method is expandable to different 

domains, and especially suitable for streaming news. 

Experimental results show that CoDet effectively and efficiently 

produces remarkable results in detecting containments. 

Categories and Subject Descriptors 

H.3.7 [Digital Libraries]: Collection, System Issues. 

General Terms 

Algorithms, Experimentation, Performance, Reliability 

Keywords 

Corpus Tree, Document Containment, Duplicate Detection, 

Similarity, Test Collection Preparation. 

1. INTRODUCTION 
Near-duplicate1 detection is an important task in various web 

applications. Due to reasons such as mirroring, plagiarism, and 

versioning such documents are common in many web applications 

[17].  For example, Internet news sources generally disseminate 

slightly different versions of news stories coming from syndicated 

agencies by making small changes in the news articles. 

Identifying such documents increases the efficiency and 

effectiveness of search engines.   

We consider a generalized version of the near-duplicate 

detection problem and investigate whether a document is a subset 

of another document [2]. In text-based applications, document 

containment can be observed in near-duplicates and containments. 

We refer to identifying such document pairs as the document 

containment detection problem. We study this problem within the 

context of news corpora that involve streaming news articles.  

If a document dC possesses all the information that document 

dA has, then dC is said to contain dA, which is denoted as dC⊇dA, 

and this relation is called containment. Moreover, if two 
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documents contain roughly the same content, they are near-

duplicates [6]. Although near-duplicate condition is a special case 

of containment, these two cases are not usually distinguished from 

each other [15]. Similar to the “conditional equivalence” concept 

defined by Zobel and Bernstein [17], if dC⊇dA, then a news-

consumer who have already read dC would have no need to read 

dA. Of course, dC⊇dA does not necessarily imply dA⊇dC, i.e. 

containment relation is asymmetric. By detecting dC⊇dA, news 

consumers that have already seen dC can be informed to skip 

reading dA. 

In related studies, containment problem is addressed by near-

duplicate detection algorithms. Therefore, we compare 

performance of CoDet with well-known near-duplicate detection 

approaches. 

Contributions of this study are the following. We introduce a 

sentence-based containment detection method adaptable to 

different text-based problem domains, and especially suitable for 

streaming news; show that our approach outperforms commonly 

known near-duplicate detection methods; and construct a test 

collection using a novel pooling technique, which enables us to 

make reliable judgments for the relative effectiveness of 

algorithms using limited human assessments. 

2. RELATED WORK 
In near-duplicate detection similarity measurement plays an 

important role [11]. By using similarity, two documents are 

defined as duplicates if their similarity or resemblance [3] exceeds 

a certain threshold value. Such approaches are applied to identify 

roughly the same documents, which have the same content except 

for slight modifications [1]. In comparisons, factors other than 

similarity may also play a role. Conrad and Schriber [7] after 

consulting librarians deem that two documents are duplicates if 

they have 80% overlap and 20 variations in length.  

Similarity measures may use all words in documents in 

calculation. Instead of using each word, a sequence of them, 

shingles, may be used. In shingling approaches, if two documents 

have significant number of shingles in common, then they are 

considered as similar (near-duplicate). Well-known shingling 

techniques include for example COPS [1] and DSC (Digital 

Syntactic Clustering) [3]. COPS uses the sentences (or small 

units) to generate hash codes and stores these in a table to see if a 

document contains a sentence. Wang and Chang propose using the 

sequence of sentence lengths for near-duplicate detection and they 

evaluated different configurations of sentence-level and word-

level algorithms [14]. 

Shingling and similarity approaches suffer from efficiency 

issues. As a result a new strategy emerged which is based on 

hashing of the whole document.  I-Match [6] is a commonly 

known approach that uses this strategy. It filters terms based on 

collection statistics (idf values). Charikar‟s [5] Simhash method is 

based on the idea of creating a hash by using document features 

(words, bigram, trigrams, etc.). It compares bit differences of 



these signatures to decide if two documents are near-duplicate or 

not. Yang and Callan [15] use clustering concepts for efficiency. 

While clustering documents they use additional information 

extracted from documents and structural relationships among 

document pairs.  

Hajishirzi et al. [9] propose an adaptable method for near 

duplicate detection by representing documents as real valued 

sparse k-gram vectors, where weights are learnt to optimize a 

similarity function. Zhang et al. [18] address the partial-duplicate 

detection problem by doing sentence level near-duplicate 

detection and sequence matching. Their algorithm generates a 

signature for each sentence and sentences that have the same 

signature are considered as near-duplicates. Theobald et al. [13] 

propose SpotSigs algorithm that combines stopword antecedents 

with short chains of adjacent content terms to create signatures. 

3. CODET ALGORITHM 

3.1 Containment Similarity Concept 
CoDet is a novel sentence-based containment detection algorithm. 

It employs a new similarity measure called containment similarity 

(CS). It measures to what extent a document dA is contained by 

another document dC, which is defined as 

                                   

          

                                      

where SA and SC denote the set of sentences in dA and dC, 

respectively. The function cs(si, sj) indicates containment 

similarity between sentences si and sj, which is calculated as 

                             
 

   
           

   

                           

where f(si, sj)  denotes the word sequence representing the longest 

word prefix match of the sentences si and sj, lent is the length of 

the word sequence t, and wt,k stands for the kth word in the word 

sequence t. For example, let s1 be “John is happy.” and s2 be 

“John is sad.” then f(s1, s2) is a word sequence (John, is),  

            is 2 and wf(s1, s2),1 is John. 

As can be seen in Formula 2, containment similarity between 

two sentences grows significantly as their word prefix match gets 

longer. The containment similarity of a document to itself is 

referred to as self-containment similarity (SCS). 

 
Fig. 1. Insertion of three documents dA: “NASDAQ starts day with an 

increase. Shares gain 2%.”, dB: “NASDAQ starts the day with a decrease. 

Shares lose 2%.”, and dC: “Shares lose 2%.”. For the sake of clarity, words 

of sentences are not sorted according to their idf values. 

 

3.2 Containment Similarity Calculation 
For efficient calculation of containment similarities, we utilize a 

data structure called corpus tree. The corpus tree begins with a 

virtual root node which contains a pointer list storing the locations 

of the children nodes in the next level. In addition to pointer list, 

nodes other than the root contain a label and a document list. The 

label represents the node‟s term and the document list contains 

visiting document ids. 

 Let dA denote a document with a set of sentences SA= {s1, s2 

… sn}. Processing of dA involves processing all of its sentences. 

Insertion of si (1≤ i ≤ n) to the corpus tree is performed as follows: 

First, words of si are sorted according to their idf values in 

descending order. Let <w1, w2 … wm> denote the sequence of 

words in si after sorting. These words are inserted into the corpus 

tree starting from the virtual root node. If the root has a child     
 

with label w1, then similarity values of dA with all documents in 

    
's document list are increased according to Formula 2. 

Otherwise, a new child node     
 with label w1 is created and 

added to the root‟s pointer list. In the next step, we treat     
 as 

we did the root, and insert the following word w2 of si similarly. 

The insertion of si finishes after all of its words are processed. The 

remaining sentences of dA are handled in the same manner. The 

same is done for the remaining sentences of dA. 

Fig. 1. shows how the corpus tree grows with sentence 

insertions. In Fig. 1-I, dA‟s sentences “NASDAQ starts day with 

an increase.” and “Shares gain 2%.” are inserted to the corpus tree 

starting from the virtual root, which is shown by a dark circle. 

Since the tree is initially empty, while inserting the first sentence 

all the nodes with labels <nasdaq, starts, day, with, an, increase> 

are created. Similarly, insertion of the second sentence creates 

nodes with labels <shares, gain, 2%>. In Fig. 1-II, during the 

insertion of the sentence “NASDAQ starts day with a decrease.” 

previously created nodes with labels <nasdaq, starts, day, with> 

are visited and updated. Also, two nodes with labels <a, 

decrease> are created. Insertion of the sentence “Shares lose 2%.” 

visits the node with label shares and creates two nodes with labels 

<lose, 2%>. Thus, similarity value of dA and dB is increased by 

summation of each revisited node's impact values, which is 

calculated by multiplication of node‟s depth and idf value of its 

label. For example, contribution of the node with label starts is 

                  because its depth is 2 and word starts 

appears in 2 of 3 documents (in the experiments, the idf values are 

obtained from a large reference collection). The final structure of 

the corpus tree after the insertion of dC is shown in Fig. 1-III. 

To decide whether a document dA is contained by another 

document dC, CoDet uses CS(dA, dC) as well as SCS(dA) values. If 

(CS(dA, dC) / SCS(dA)) exceeds the equivalency threshold level 

(ETL), dC is said to contain dA. In the experiments, different ETL 

values are tested. 

3.3 Complexity Analysis 
For each scenario, let n denote the number of documents and let c 

denote the average number of words per document, which is 

treated as constant. 

First Scenario (One Content, n Documents): In this case, each 

document has the same content; therefore, corpus tree contains c 

nodes. Each node contains n integers in its document list. As a 

result, the memory requirement of the corpus tree is O(n) but due 

to pairwise containment similarity increase operations the 

algorithm takes O(n2) time.  

Second Scenario (n Different Contents, n Documents): In this 

case, each document has totally different content. Thus, corpus 

tree contains nc nodes (one node for each word). Each node 



contains only one document id in its document list. Therefore, 

asymptotically the memory requirement of the corpus tree is O(n) 

and the algorithm takes O(n) time. 

The first scenario is the worst case for CoDet, where the algorithm 

performs nonlinearly. The second one is the best case for CoDet 

and the algorithm runs in linear time. In practice the algorithm 

behaves as if it is linear because average number of near-duplicate 

per document is significantly smaller than n. Also CoDet is 

especially suitable for streaming news since with a time window 

concept, which makes older documents to be removed from the 

corpus tree, the corpus tree does not grow too much. 

4. EXPERIMENTAL SETUP 
We used four algorithms to compare their effectiveness and 

efficiency with CoDet. These algorithms are: 

DSC: Every three overlapping substrings of size four in the 

documents are hashed. If a document dC contains 60% of dA‟s 

hash values, we say dC⊇dA [3]. 

Full Fingerprinting (FFP): For each document, all substrings of 

size four are hashed. If document dC contains 60% of dA‟s hash 

values, then, dC⊇dA. 

I-Match: First two words with the highest idf values are ignored. 

After that, ten words with the highest idf values are used to create 

a fingerprint for each document. When a pair of documents has 

the same fingerprint, the pair is marked as containment [6]. 

SimHash: First two words with the highest idf values are ignored. 

Then, each unique term of a document is hashed. We use a vector 

v, whose size is equal to the hash value bit size, to determine the 

final SimHash [5] value. For each term t, ith element of the vector 

v is updated as follows: If ith bit of the hash value of t is zero, then 

it is decreased by idf of w. It is increased by the idf otherwise. 

Finally, if ith element of v is positive, ith bit of the SimHash value 

is set to one; otherwise it is set to zero. When a pair of documents‟ 

SimHash values has a Hamming distance less than three, the pair 

is considered as containment. 

For hashing, SHA1 [6] algorithm is used in all methods. 

Stopword elimination and a word truncation-based stemming 

(first-5) are performed before the detection process. I-Match, 

SimHash and CoDet requires idf values. These values are obtained 

from a large reference collection (defined in the next section). In 

order to do a fair evaluation, each algorithm‟s parameters are 

optimized to give the best results for efficiency. 

We performed the experimentation on a machine with quad 

2.1Ghz six-core AMD Opteron processors with six 128 KB L1, 

512 KB L2, and one 6MB L3 cache. It has 128 GB memory and 

operating system Debian Linux v5.0.5. 

4.1 Test Collection Preparation 
There is no gold-standard test collection for containment detection 

in news corpora; therefore, we prepared a test dataset from the 

Turkish TDT (Topic Detection and Tracking) news collection 

(BilCol-2005) [4] which contains 209,305 streaming (time-

ordered) news articles obtained from five different Turkish web 

news sources.  

For efficiency measurement, we used all documents of BilCol-

2005. For effectiveness measurement, we used the first 5,000 

documents of BilCol-2005. It is practically impossible to provide 

human assessment for each document pair in this sub-collection. 

Our approach to human assessments is similar to the pooling 

method used in TREC for the evaluation of IR systems [16]. For 

the creation of the dataset, we obtained a number of possible 

containments by running all five methods (including CoDet) with 

permissive parameters. In this way, methods nominate all pairs 

that would normally be chosen with their selective parameters, 

together with several additional pairs as containment candidates. 

Since the methods are executed with permissive parameters, we 

expect that most of the real containments will be added to the test 

collection. All pairs of documents, which are marked as 

containments by any of the methods, are brought to the attention 

of human assessors to determine whether they actually are 

containments. Note that in order to measure the effectiveness of a 

new algorithm with this test dataset, adding human assessments 

only for containment candidates that are nominated solely by this 

new algorithm to our dataset is sufficient. 

By this approach, our dataset includes only true positive (TP) 

and false positive (FP) document pairs returned by any of our 

permissive algorithms. excluding true negative and false negative 

pairs do not change the relative effectiveness rankings of selective 

algorithms during the test phase; because, if a permissive 

algorithm marks a pair as negative (non-containment), then its 

selective counterpart should also marks that pair as negative. 

Therefore, including TN and FN pairs of permissive algorithms in 

our dataset would not contribute to the number of positive pairs 

(TP‟s and FP‟s) returned by any selective algorithm during the 

test phase. Hence, using our pruned dataset, precision1 values of 

the selective algorithms remain unchanged with respect to 

precision values they would obtain in a full dataset having 

annotations for all possible document pairs. Similarly, recall 

values of the selective algorithms decrease proportionally (with 

the same ratio of total number of containments in the pruned 

dataset to the total number of containments in the full dataset, for 

all algorithms) with respect to recall values they would obtain in 

the full dataset.  

Our pooling process generated 4,727 document pairs 

nominations. We performed a human-based annotation to obtain a 

ground truth. The pooled document pairs are divided into 20 

groups containing about the same number of nominations. Each 

document pair is annotated by two assessors. The assessors are 

asked if the nominated document pairs are actually containments.  

The assessors identified 2,875 containment cases. The size of our 

dataset is comparable with the annotated test collections reported 

in related studies [13].  

In information retrieval, human assessors may have different 

opinions about the relevance of a document to a query. A similar 

situation arises in our assessments. For example, for the document 

pair dC = “XYZ shares increase 10% from 100 to 110.” and dA = 

“XYZ shares increase from 100 to 110.”, some assessors may say 

that dC and dA are near-duplicates, while some others may claim 

dC contains dA, but the dA does not contain dC. In such cases we 

expect disagreements among human assessors. In order to validate 

the reliability of the assessments, we measured the agreements of 

the judgments by using the Cohen‟s Kappa measure, and obtained 

an average agreement rate of 0.73. This indicates almost a 

substantial agreement [10], which is an important evidence for the 

reliability of our test dataset. Furthermore, such conflicts are 

resolved by an additional assessor.  

5. EXPERIMENTAL RESULTS 
In this section, we first investigate the impacts of the following 

parameters on the performance of CoDet: Processed Suffix Count 

(PSC), Depth Threshold (DT), and Word Sorting (WS). This 

discussion is followed by efficiency and effectiveness 

performance of CoDet with those of four well-known near-

duplicate detection algorithms. Effectiveness measurement is 

                                                                 

1 Precision (P) = |TP| / (|TP| + |FP|). where |S| is the cardinality of 

the set S.  Recall (R) = |TP| / (|TP| + |FN|).  F1 = 2PR / (P + R). 



done by precision, recall and F1 values. Impacts of parameters and 

effectiveness experiments are done on prepared test collection. 

Efficiency experiment is performed with the whole BilCol-2005. 

5.1 Impacts of Parameters 
Processed Suffix Count (PSC): It determines how many 

suffixes of each sentence are inserted to the corpus tree. If the 

PSC is 3, the processed suffixes for “NASDAQ starts day with an 

increase.” are the sentence itself, <starts, day, with, an, increase> 

and <day, with, an, increase> Increasing PSC increases space 

requirement but do not change effectiveness considerably as 

shown in Fig. 2: Different PSC values result in close F1 scores. 

  
Fig. 2. Effect of Processed                                

Suffix Count (PSC). 

Fig. 3. Efficiency Comparison: 

Execution Time (sec) vs. Number of 

Documents. 

  
      Fig. 4. Effect of Depth Threshold      

(DT): Word Sorting (WS) is on. 

Fig. 5. Effect of Depth Threshold    

(DT): Word Sorting (WS) is off. 
  

Depth Threshold (DT): It determines how many words of a 

sentence are inserted to the corpus tree. If the DT is 3, the 

processed words “NASDAQ starts day with an increase.” are 

<nasdaq, starts, day>. Fig. 4 and 5 show the effect of DT on F1 

score. Sorting words of a sentence by idf values places 

representative words close to the virtual root. Thus, results are 

better for small DT values when word sorting is enabled. It avoids 

the noise effect of insignificant words in similarity calculations. In 

the experiments, DT value of 5 gives the best result; also smaller 

DT values yield a similar performance. Thus, instead of having 

the corpus tree structure, an algorithm that considers only a few 

most significant words from each sentence can improve efficiency 

without sacrificing effectiveness significantly. 

Word Sorting (WS): Sorting words in sentences by idf values 

causes important words to be located close to the virtual root. 

Since most sentences start with common words, by using word 

sorting, we avoid many redundant similarity calculations. In the 

experiments, enabling word sorting decreases average number of 

calculated similarity per document from 341 to 3.53. 

5.2 Comparing with Other Algorithms 
The efficiency results are given in Fig. 3. As the number of 

documents increase, execution time of full fingerprinting 

increases non-linearly. Hence, it is not feasible for large 

collections. This is because it calculates similarity values for each 

document pair that has at least one substring in common. CoDet 

performs as the third best algorithm in time efficiency; because, 

the corpus tree accesses impose many random memory accesses, 

which disturb cache coherency. Our results show that I-Match, 

SimHash and CoDet are scalable to large collections. 

 Table 1 shows the effectiveness results. The best performance 

with a value of 0.85 F1 score is observed with FFP since it 

calculates text overlaps between document pairs having a 

common substring. Therefore, without making any semantic 

analysis, it is difficult to outperform FFP in terms of effectiveness 

with a time-linear algorithm. CoDet finds text overlaps by only 

using important words of sentences and is the second best in terms 

of effectiveness with an F1 score of 0.76. I-Match, SimHash, and 

DSC perform poorly with respective F1 scores of 0.45, 0.39, and 

0.30. FFP is not feasible for large collections; thus, CoDet is the 

most suitable algorithm for containment detection in news 

corpora.  

6. CONCLUSIONS 
In this work we investigate containment detection problem, which 

is a more generalized version of the near-duplicate detection 

problem. We introduce a new approach, and compare its 

performance with four other well-known methods. As the 

experimental results demonstrate CoDet is preferable to all these 

methods; since it produces considerably better results in a feasible 

time. It also has desirable features such as time-linear efficiency 

and scalability, which enriches its practical value. Our method is 

versatile, can be improved, and can be extended to different 

problem domains. 
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